Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nutrients ; 16(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674841

RESUMO

Osteoporosis affects one in three women over the age of 50 and results in fragility fractures. Oestrogen deficiency during and after menopause exacerbates bone loss, accounting for higher prevalence of fragility fractures in women. The gut microbiota (GM) has been proposed as a key regulator of bone health, as it performs vital functions such as immune regulation and biosynthesis of vitamins. Therefore, GM modulation via probiotic supplementation has been proposed as a target for potential therapeutic intervention to reduce bone loss. While promising results have been observed in mouse model studies, translation into human trials is limited. Here, we present the study protocol for a double-blind randomized controlled trial that aims to examine the effectiveness of three lactobacilli strains on volumetric bone mineral density (vBMD), trabecular, and cortical microstructure, as measured using High Resolution peripheral Quantitative Computed Tomography (HR-pQCT). The trial will randomize 124 healthy early postmenopausal women (up to 8 years from menopause) to receive either probiotic or placebo administered once daily for 12 months. Secondary outcomes will investigate the probiotics' effects on areal BMD and specific mechanistic biomarkers, including bone metabolism and inflammatory markers. The trial is registered with Australian New Zealand Clinical Trials Registry (ACTRN12621000810819).


Assuntos
Densidade Óssea , Suplementos Nutricionais , Lactobacillus , Pós-Menopausa , Probióticos , Humanos , Probióticos/administração & dosagem , Feminino , Densidade Óssea/efeitos dos fármacos , Método Duplo-Cego , Austrália , Pessoa de Meia-Idade , Osteoporose Pós-Menopausa/prevenção & controle , Microbioma Gastrointestinal , Osso e Ossos/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Eur J Endocrinol ; 187(2): 241-256, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666800

RESUMO

Objective: In men, many effects of testosterone (T) on the skeleton are thought to be mediated by estradiol (E2), but trial evidence is largely lacking. This study aimed to determine the effects of E2 on bone health in men in the absence of endogenous T. Design: This study is a 6-month randomized, placebo-controlled trial with the hypothesis that E2 would slow the decline of volumetric bone mineral density (vBMD) and bone microstructure, maintain areal bone mineral density (aBMD), and reduce bone remodelling. Methods: 78 participants receiving androgen deprivation therapy for prostate cancer were randomized to 0.9 mg of 0.1% E2 gel daily or matched placebo. The outcome measures were vBMD and microarchitecture at the distal tibia and distal radius by high-resolution peripheral quantitative CT, aBMD at the spine and hip by dual-energy x-ray absorptiometry, and serum bone remodelling markers. Results: For the primary endpoint, total vBMD at the distal tibia, there was no significant difference between groups, mean adjusted difference (MAD) 2.0 mgHA/cm3 (95% CI: -0.8 to 4.8), P = 0.17. Cortical vBMD at the distal radius increased in the E2 group relative to placebo, MAD 14.8 mgHA/cm3 (95% CI: 4.5 to 25.0), P = 0.005. Relative to placebo, E2 increased estimated failure load at tibia, MAD 250 N (95% CI: 36 to 465), P = 0.02, and radius, MAD 193 N (95% CI: 65 to 320), P = 0.003. Relative to placebo, E2 increased aBMD at the lumbar spine, MAD 0.02 g/cm2 (95% CI: 0.01 to 0.03), P = 0.01, and ultra-distal radius, MAD 0.01 g/cm2 (95% CI: 0.00 to 0.02), P = 0.01, and reduced serum bone remodelling markers. Conclusion: Relative to placebo, E2 treatment increases some measures of bone density and bone strength in men and reduces bone remodelling, effects that occur in the absence of endogenous T.


Assuntos
Antagonistas de Androgênios , Neoplasias da Próstata , Absorciometria de Fóton , Antagonistas de Androgênios/efeitos adversos , Androgênios/farmacologia , Densidade Óssea , Estradiol/farmacologia , Estradiol/uso terapêutico , Humanos , Masculino , Rádio (Anatomia)/diagnóstico por imagem , Tíbia
3.
J Bone Miner Res ; 37(4): 643-648, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981566

RESUMO

Gender-affirming hormone therapy aligns physical characteristics with an individual's gender identity, but sex hormones regulate bone remodeling and influence bone morphology. We hypothesized that trans men receiving testosterone have compromised bone morphology because of suppression of ovarian estradiol production, whereas trans women receiving estradiol, with or without anti-androgen therapy, have preserved bone microarchitecture. We compared distal radial and tibial microarchitecture using high-resolution peripheral quantitative computed tomography images in a cross-sectional study of 41 trans men with 71 cis female controls, and 40 trans women with 51 cis male controls. Between-group differences were expressed as standardized deviations (SD) from the mean in age-matched cisgender controls with 98% confidence intervals adjusted for cross-sectional area (CSA) and multiple comparisons. Relative to cis women, trans men had 0.63 SD higher total volumetric bone mineral density (vBMD; both p = 0.01). Cortical vBMD and cortical porosity did not differ, but cortices were 1.11 SD thicker (p < 0.01). Trabeculae were 0.38 SD thicker (p = 0.05) but otherwise no different. Compared with cis men, trans women had 0.68 SD lower total vBMD (p = 0.01). Cortical vBMD was 0.70 SD lower (p < 0.01), cortical thickness was 0.51 SD lower (p = 0.04), and cortical porosity was 0.70 SD higher (p < 0.01). Trabecular bone volume (BV/TV) was 0.77 SD lower (p < 0.01), with 0.57 SD fewer (p < 0.01) and 0.30 SD thicker trabeculae (p = 0.02). There was 0.56 SD greater trabecular separation (p = 0.01). Findings at the distal radius were similar. Contrary to each hypothesis, bone microarchitecture was not compromised in trans men, perhaps because aromatization of administered testosterone prevented bone loss. Trans women had deteriorated bone microarchitecture either because of deficits in microstructure before treatment or because the estradiol dosage was insufficient to offset reduced aromatizable testosterone. Prospective studies are needed to confirm these findings. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Pessoas Transgênero , Absorciometria de Fóton , Adulto , Densidade Óssea/fisiologia , Estudos Transversais , Estradiol , Feminino , Identidade de Gênero , Humanos , Masculino , Minerais , Rádio (Anatomia)/anatomia & histologia , Testosterona , Tíbia/fisiologia
4.
Inflamm Bowel Dis ; 28(2): 259-272, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34347076

RESUMO

BACKGROUND: Osteoporosis is a common extraintestinal manifestation of inflammatory bowel disease (IBD). However, studies have been scarce, mainly because of the lack of an appropriate animal model of colitis-associated bone loss. In this study, we aimed to decipher skeletal manifestations in the Winnie mouse model of spontaneous chronic colitis, which carries a MUC2 gene mutation and closely replicates ulcerative colitis. In our study, Winnie mice, prior to the colitis onset at 6 weeks old and progression at 14 and 24 weeks old, were compared with age-matched C57BL/6 controls. We studied several possible mechanisms involved in colitis-associated bone loss. METHODS: We assessed for bone quality (eg, microcomputed tomography [micro-CT], static and dynamic histomorphometry, 3-point bending, and ex vivo bone marrow analysis) and associated mechanisms (eg, electrochemical recordings for gut-derived serotonin levels, real-time polymerase chain reaction [qRT-PCR], double immunofluorescence microscopy, intestinal inflammation levels by lipocalin-2 assay, serum levels of calcium, phosphorus, and vitamin D) from Winnie (6-24 weeks) and age-matched C57BL6 mice. RESULTS: Deterioration in trabecular and cortical bone microarchitecture, reductions in bone formation, mineral apposition rate, bone volume/total volume, osteoid volume/bone surface, and bone strength were observed in Winnie mice compared with controls. Decreased osteoblast and increased osteoclast numbers were prominent in Winnie mice compared with controls. Upregulation of 5-HTR1B gene and increased association of FOXO1 with ATF4 complex were identified as associated mechanisms concomitant to overt inflammation and high levels of gut-derived serotonin in 14-week and 24-week Winnie mice. CONCLUSIONS: Skeletal phenotype of the Winnie mouse model of spontaneous chronic colitis closely represents manifestations of IBD-associated osteoporosis/osteopenia. The onset and progression of intestinal inflammation are associated with increased gut-derived serotonin level, increased bone resorption, and decreased bone formation.


Assuntos
Colite , Animais , Colite/complicações , Colite/genética , Modelos Animais de Doenças , Humanos , Inflamação/complicações , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Microtomografia por Raio-X
5.
Bone ; 154: 116260, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801763

RESUMO

INTRODUCTION: Measurement of bone mineral density (BMD) is recommended in patients with chronic kidney disease (CKD). However, most persons in the community and most patients with CKD have osteopenia, suggesting fracture risk is low. Bone loss compromises bone microarchitecture which increases fragility disproportionate to modest deficits in BMD. We therefore hypothesized that patients with CKD have reduced estimated failure load due to deterioration in microarchitecture irrespective of whether they have normal femoral neck (FN) BMD, osteopenia or osteoporosis. METHODS: We measured distal tibial and distal radial microarchitecture in 128 patients with CKD and 275 age- and sex-matched controls using high resolution peripheral quantitative computed tomography, FN-BMD using bone densitometry and estimated failure load at the distal appendicular sites using finite element analysis. RESULTS: Patients versus controls respectively had: lower tibial cortical area 219 (40.7) vs. 237 (35.3) mm2, p = 0.002, lower cortical volumetric BMD 543 (80.7) vs. 642 (81.7) mgHA/cm3 due to higher porosity 69.6 (6.19) vs. 61.9 (6.48)% and lower matrix mineral density 64.2 (0.62) vs. 65.1 (1.28)%, lower trabecular vBMD 92.2 (41.1) vs. 149 (43.0) mgHA/cm3 due to fewer and spatially disrupted trabeculae, lower FN-BMD 0.78 (0.12) vs. 0.94 (0.14) g/cm2 and reduced estimated failure load 3825 (1152) vs. 5778 (1467) N, all p < 0.001. Deterioration in microarchitecture and estimated failure load was most severe in patients and controls with osteoporosis. Patients with CKD with osteopenia and normal FN-BMD had more deteriorated tibial microarchitecture and estimated failure load than controls with BMD in the same category. In univariate analyses, microarchitecture and FN-BMD were both associated with estimated failure load. In multivariable analyses, only microarchitecture was independently associated with estimated failure load and accounted for 87% of the variance. CONCLUSIONS: Bone fragility is likely to be present in patients with CKD despite them having osteopenia or normal BMD. Measuring microarchitecture may assist in targeting therapy to those at risk of fracture.


Assuntos
Doenças Ósseas Metabólicas , Osso e Ossos , Osteoporose , Insuficiência Renal Crônica , Absorciometria de Fóton , Densidade Óssea , Doenças Ósseas Metabólicas/complicações , Osso e Ossos/anatomia & histologia , Humanos , Rádio (Anatomia) , Insuficiência Renal Crônica/complicações
6.
Bone Rep ; 14: 101071, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33997148

RESUMO

INTRODUCTION: Pregnancy is associated with changes in bone remodeling and calcium metabolism, which may increase the risk of fragility fracture after menopause. We hypothesized that in postmenopausal women, with history of grand multiparity, the magnitude of trabecular bone deterioration is associated with number of deliveries. METHODS: 1217 women aged 69.2 ± 6.4 years, from the Bushehr Elderly Health (BEH) program were recruited. The areal bone mineral density (aBMD) of the lumbar spine and femoral neck and trabecular bone score (TBS) of 916 postmenopausal women, with grand multiparity defined as more than 4 deliveries, were compared with those of 301 postmenopausal women with 4 or fewer deliveries. The association of multiparity with aBMDs and TBS were evaluated after adjustment for possible confounders including age, years since menopause, body mass index, and other relevant parameters. RESULTS: The aBMD of femoral neck (0.583 ± 0.110 vs. 0.603 ± 0.113 g/cm2), lumbar spine (0.805 ± 0.144 vs. 0.829 ± 0.140 g/cm2) and TBS (1.234 ± 0.086 vs. 1.260 ± 0.089) were significantly lower in women with history of grand multiparity than others. In the multiple regression analysis, after adjusting for confounders, the negative association did persist for lumbar spine aBMD (beta = -0.02, p value = 0.01), and the TBS (beta = -0.01, p value = 0.03), not for femoral neck aBMD. CONCLUSION: We infer that grand multiparity have deleterious effects on the aBMD and the trabecular pattern of the lumbar spine.

7.
J Clin Med ; 10(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800284

RESUMO

To determine whether stress fractures are associated with bone microstructural deterioration we quantified distal radial and the unfractured distal tibia using high resolution peripheral quantitative computed tomography in 26 cases with lower limb stress fractures (15 males, 11 females; mean age 37.1 ± 3.1 years) and 62 age-matched healthy controls (24 males, 38 females; mean age 35.0 ± 1.6 years). Relative to controls, in men, at the distal radius, cases had smaller cortical cross sectional area (CSA) (p = 0.012), higher porosity of the outer transitional zone (OTZ) (p = 0.006), inner transitional zone (ITZ) (p = 0.043) and the compact-appearing cortex (CC) (p = 0.023) while trabecular vBMD was lower (p = 0.002). At the distal tibia, cases also had a smaller cortical CSA (p = 0.008). Cortical porosity was not higher, but trabecular vBMD was lower (p = 0.001). Relative to controls, in women, cases had higher distal radial porosity of the OTZ (p = 0.028), ITZ (p = 0.030) not CC (p = 0.054). Trabecular vBMD was lower (p = 0.041). Distal tibial porosity was higher in the OTZ (p = 0.035), ITZ (p = 0.009), not CC. Stress fractures are associated with compromised cortical and trabecular microstructure.

8.
J Clin Endocrinol Metab ; 106(8): e3143-e3158, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33693907

RESUMO

CONTEXT: Testosterone treatment increases bone mineral density (BMD) in hypogonadal men. Effects on bone microarchitecture, a determinant of fracture risk, are unknown. OBJECTIVE: We aimed to determine the effect of testosterone treatment on bone microarchitecture using high resolution-peripheral quantitative computed tomography (HR-pQCT). METHODS: Men ≥ 50 years of age were recruited from 6 Australian centers and were randomized to receive injectable testosterone undecanoate or placebo over 2 years on the background of a community-based lifestyle program. The primary endpoint was cortical volumetric BMD (vBMD) at the distal tibia, measured using HR-pQCT in 177 men (1 center). Secondary endpoints included other HR-pQCT parameters and bone remodeling markers. Areal BMD (aBMD) was measured by dual-energy x-ray absorptiometry (DXA) in 601 men (5 centers). Using a linear mixed model for repeated measures, the mean adjusted differences (95% CI) at 12 and 24 months between groups are reported as treatment effect. RESULTS: Over 24 months, testosterone treatment, versus placebo, increased tibial cortical vBMD, 9.33 mg hydroxyapatite (HA)/cm3) (3.96, 14.71), P < 0.001 or 3.1% (1.2, 5.0); radial cortical vBMD, 8.96 mg HA/cm3 (3.30, 14.62), P = 0.005 or 2.9% (1.0, 4.9); total tibial vBMD, 4.16 mg HA/cm3 (2.14, 6.19), P < 0.001 or 1.3% (0.6, 1.9); and total radial vBMD, 4.42 mg HA/cm3 (1.67, 7.16), P = 0.002 or 1.8% (0.4, 2.0). Testosterone also significantly increased cortical area and thickness at both sites. Effects on trabecular architecture were minor. Testosterone reduced bone remodeling markers CTX, -48.1 ng/L [-81.1, -15.1], P < 0.001 and P1NP, -6.8 µg/L[-10.9, -2.7], P < 0.001. Testosterone significantly increased aBMD at the lumbar spine, 0.04 g/cm2 (0.03, 0.05), P < 0.001 and the total hip, 0.01 g/cm2 (0.01, 0.02), P < 0.001. CONCLUSION: In men ≥ 50 years of age, testosterone treatment for 2 years increased volumetric bone density, predominantly via effects on cortical bone. Implications for fracture risk reduction require further study.


Assuntos
Densidade Óssea/efeitos dos fármacos , Osso Cortical/efeitos dos fármacos , Vértebras Lombares/efeitos dos fármacos , Testosterona/farmacologia , Tíbia/efeitos dos fármacos , Absorciometria de Fóton , Idoso , Remodelação Óssea/efeitos dos fármacos , Osso Cortical/diagnóstico por imagem , Método Duplo-Cego , Humanos , Vértebras Lombares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tíbia/diagnóstico por imagem
9.
Bone ; 142: 115778, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253932

RESUMO

BACKGROUND: Modelling and remodelling adapt bone morphology to accommodate strains commonly encountered during loading. If strains exceed a threshold threatening fracture, modelling-based bone formation increases bone volume reducing these strains. If unloading reduces strains below a threshold that inhibits resorption, increased remodelling-based bone resorption reduces bone volume restoring strains, but at the price of compromised bone volume and microstructure. As weight-bearing regions are adapted to greater strains, we hypothesized that microstructural deterioration will be more severe than at regions commonly adapted to low strains following spinal cord injury. METHODS: We quantified distal tibial, fibula and radius volumetric bone mineral density (vBMD) using high-resolution peripheral quantitative computed tomography in 31 men, mean age 43.5 years (range 23.5-75.0), 12 with tetraplegia and 19 with paraplegia of 0.7 to 18.6 years duration, and 102 healthy age- and sex-matched controls. Differences in morphology relative to controls were expressed as standardized deviation (SD) scores (mean ± SD). Standardized between-region differences in vBMD were expressed as SDs (95% confidence intervals, CI). RESULTS: Relative to controls, men with tetraplegia had deficits in total vBMD of -1.72 ± 1.38 SD at the distal tibia (p < 0.001) and - 0.68 ± 0.69 SD at distal fibula (p = 0.041), but not at the distal radius, despite paralysis. Deficits in men with paraplegia were -2.14 ± 1.50 SD (p < 0.001) at the distal tibia and -0.83 ± 0.98 SD (p = 0.005) at the distal fibula while distal radial total vBMD was 0.23 ± 1.02 (p = 0.371), not significantly increased, despite upper limb mobility. Comparing regions, in men with tetraplegia, distal tibial total vBMD was 1.04 SD (95%CI 0.07, 2.01) lower than at the distal fibula (p = 0.037) and 1.51 SD (95%CI 0.45, 2.57) lower than at the distal radius (p = 0.007); the latter two sites did not differ from each other. Results were similar in men with paraplegia, but total vBMD at the distal fibula was 1.06 SD (95%CI 0.35, 1.77) lower than at the distal radius (p = 0.004). CONCLUSION: Microarchitectural deterioration following spinal cord injury is heterogeneous, perhaps partly because strain thresholds regulating the cellular activity of mechano-transduction are region specific.


Assuntos
Fraturas Ósseas , Traumatismos da Medula Espinal , Adulto , Idoso , Densidade Óssea , Humanos , Masculino , Pessoa de Meia-Idade , Rádio (Anatomia) , Traumatismos da Medula Espinal/complicações , Tíbia/diagnóstico por imagem , Adulto Jovem
10.
J Bone Miner Res ; 35(10): 1871-1880, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32542695

RESUMO

Androgen deprivation therapy (ADT) given to men with prostate cancer causes rapid and severe sex steroid deficiency, leading to increased bone remodeling and accelerated bone loss. To examine the effects of a single dose of zoledronic acid on bone microarchitecture, we conducted a 2-year randomized placebo controlled trial in 76 men, mean age (interquartile range [IQR]) 67.8 years (63.8 to 73.9) with non-metastatic prostate cancer commencing adjuvant ADT; 39 were randomized to zoledronic acid and 37 to matching placebo. Bone microarchitecture was measured using high-resolution peripheral quantitative computed tomography (HR-pQCT). Using a mixed model, mean adjusted differences (MAD; 95% confidence interval [95% CI]) between the groups are reported as the treatment effect at several time points. Over 24 months, zoledronic acid showed no appreciable treatment effect on the primary outcomes for total volumetric bone mineral density (vBMD); radius (6.7 mg HA/cm3 [-2.0 to 15.4], p = 0.21) and tibia (1.9 mg HA/cm3 [-3.3 to 7.0], p = 0.87). Similarly, there were no between-group differences in other measures of microarchitecture, with the exception of a modest effect of zoledronic acid over placebo in total cortical vBMD at the radius over 12 months (17.3 mgHA/cm3 [5.1 to 29.5]). In contrast, zoledronic acid showed a treatment effect over 24 months on areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) at all sites, including lumbar spine (0.10 g/cm2 [0.07 to 0.13]), p < 0.001), and total hip (0.04 g/cm2 [0.03 to 0.05], p < 0.001). Bone remodeling markers were initially suppressed in the treatment group then increased but remained lower relative to placebo (MADs at 24 months CTX -176 ng/L [-275 to -76], p < 0.001; P1NP -18 mg/L [-32 to -5], p < 0.001). These findings suggest that a single dose of zoledronic acid over 2 years is ineffective in preventing the unbalanced bone remodeling and severe microstructural deterioration associated with ADT therapy. © 2020 American Society for Bone and Mineral Research.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Ácido Zoledrônico/uso terapêutico , Absorciometria de Fóton , Idoso , Androgênios , Remodelação Óssea , Humanos , Masculino , Pessoa de Meia-Idade , Rádio (Anatomia) , Tíbia
11.
Spinal Cord ; 58(1): 78-85, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31312016

RESUMO

STUDY DESIGN: Randomized controlled trial. OBJECTIVE: To determine the effects of advanced weight-bearing mat exercises (AWMEs) with/without functional electrical stimulation (FES) of the quadriceps and gastrocnemius muscles on the ability of wheelchair-dependent people with spinal cord injury (SCI) to transfer and attain independence in activities of daily living (ADLs). SETTING: An outpatient clinic, Iran. METHODS: People with traumatic chronic paraplegia (N = 16) were randomly allocated to three groups. The exercise group (EX; N = 5) performed AWMEs of quadruped unilateral reaching and tall-kneeling for 24 weeks (3 days/week). Sessions were increased from 10 min to 54 min over the 24-week period. The exercise-FES group (EX + FES; N = 5) performed AWMEs simultaneously with FES of the quadriceps and gastrocnemius muscles. The control group performed no exercise and no FES (N = 6). The primary outcomes were the total Spinal Cord Independence Measure-III (SCIM-III) to reflect independence with ADL, and the sum of the four SCIM-III transfer items to reflect ability to transfer. There were six other outcomes. RESULTS: The mean (95% CI) between-group differences of the four transfer items of the SCIM-III for the EX vs. control group was 1.8 points (0.2-3.4), and for the EX + FES vs. control group was 2 points (0.4-3.6). The equivalent differences for the total SCIM-III scores were 2.7 points (-0.6-6.0) and 4.1 points (0.8-7.4), respectively. There were no significant between-group differences for any other outcomes. CONCLUSIONS: Advanced weight-bearing mat exercises improve the ability of wheelchair-dependent people with SCI to transfer and attain independence in ADL.


Assuntos
Atividades Cotidianas , Terapia por Estimulação Elétrica/métodos , Terapia por Exercício/métodos , Músculo Esquelético , Avaliação de Resultados em Cuidados de Saúde , Paraplegia/reabilitação , Traumatismos da Medula Espinal/reabilitação , Suporte de Carga , Adulto , Terapia Combinada , Feminino , Humanos , Masculino , Limitação da Mobilidade , Músculo Esquelético/fisiopatologia , Paraplegia/etiologia , Traumatismos da Medula Espinal/complicações , Suporte de Carga/fisiologia , Cadeiras de Rodas
12.
Curr Osteoporos Rep ; 17(6): 416-428, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31713178

RESUMO

PURPOSE OF REVIEW: The significance and roles of marrow adipose tissue (MAT) are increasingly known, and it is no more considered a passive fat storage but a tissue with significant paracrine and endocrine activities that can cause lipotoxicity and inflammation. RECENT FINDINGS: Changes in the MAT volume and fatty acid composition appear to drive bone and hematopoietic marrow deterioration, and studying it may open new horizons to predict bone fragility and anemia development. MAT has the potential to negatively impact bone volume and strength through several mechanisms that are partially described by inflammaging and lipotoxicity terminology. Evidence indicates paramount importance of MAT in age-associated decline of bone and red marrow structure and function. Currently, MAT measurement is being tested and validated by several techniques. However, purpose-specific adaptation of existing imaging technologies and, more importantly, development of new modalities to quantitatively measure MAT are yet to be done.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Medula Óssea/diagnóstico por imagem , Osso e Ossos/diagnóstico por imagem , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/patologia , Animais , Medula Óssea/anatomia & histologia , Medula Óssea/patologia , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Tamanho do Órgão , Tomografia Computadorizada por Raios X
13.
Bone ; 128: 115039, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31437567

RESUMO

INTRODUCTION: Appendicular fractures are less common in Chinese than Caucasian women. Bone mineral density (BMD) is lower, not higher than in Caucasians because Chinese have smaller appendicular dimensions than Caucasians. However, smaller bones may offset the liability to fracture by being assembled with a more robust microstructure. We hypothesized that Chinese assemble an appendicular skeleton with a thicker, less porous and more mineralized cortex that is less deteriorated in advanced age than in Caucasians. METHODS: We compared anthropometry in 477 Chinese and 278 Caucasian women and compared bone microstructure using high-resolution peripheral quantitative computed tomography in another cohort of 186 Chinese and 381 Caucasian women aged 18 to 86 years, all living in Melbourne, Australia. Trabecular plate (p) and rod (r) bone volume/total volume (BV/TV) were quantified using individual trabecula segmentation (ITS). Bone strength was estimated using micro-finite element analysis (µFEA). RESULTS: Premenopausal Chinese were shorter than Caucasian women, mainly due to shorter leg length. Distal radial total cross sectional area (CSA) was 14.8% smaller (p < 0.001). After adjusting for age and total CSA, Chinese had similar cortical and medullary areas but 0.30 SD lower cortical porosity and 0.27 SD higher matrix mineral density (both p < 0.05). Trabecular plate-to-rod ratio was 0.55 SD higher due to a 0.41 SD higher pBV/TV and 0.36 SD lower rBV/TV (p ranging 0.001 to 0.023). Chinese also had 0.36 SD greater whole bone stiffness and 0.36 SD greater failure load than Caucasians (both p < 0.05). After adjusting for age and total CSA, postmenopausal Chinese had 3.3% smaller cortical area, medullary area was 2.1% larger, cortical porosity was no lower, matrix mineral density and pBV/TV were no higher compared with Caucasians at the distal radius. Whole bone stiffness was 0.39 SD lower and failure load was 0.40 SD lower in Chinese (both p < 0.05). CONCLUSION: Chinese build a more robust skeleton than Caucasians during growth, an advantage not observed in advanced age due to greater bone loss or race-specific secular trends in bone morphology.


Assuntos
Densidade Óssea/fisiologia , Absorciometria de Fóton , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antropometria , Povo Asiático , Feminino , Análise de Elementos Finitos , Fraturas Ósseas/fisiopatologia , Humanos , Pessoa de Meia-Idade , Pós-Menopausa , Pré-Menopausa/fisiologia , Racismo , População Branca , Adulto Jovem
14.
Arch Osteoporos ; 14(1): 52, 2019 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31079228

RESUMO

We hypothesized that the lipid profile or dyslipidemia may have an influence on the bone mineral density and bone microstructure in an elderly Iranian population. The results of this study showed some significant associations between the serum lipid levels and the lumbar spine and femoral areal bone mineral densities and the trabecular bone score (TBS). PURPOSE: Serum lipid abnormalities are possible risk factors for cardiovascular diseases and osteoporosis. Our aim was to evaluate the associations between the lipid profile and the areal bone mineral density (aBMD) and trabecular bone score in an elderly Iranian population. METHODS: The study subjects included 2426 elderly women and men participating in the second stage of the Bushehr Elderly Health program, a population-based prospective cohort study. The aBMDs of the lumbar spine and femoral neck and the lumbar spine texture were measured using dual-energy X-ray absorptiometry and the TBS algorithm, respectively. The associations between the lipid profiles and the aBMDs and TBSs were examined using multivariable linear regression analyses stratified by sex and adjusted for potential confounders. RESULTS: In men, we found negative correlations between the lumbar spine aBMD and TBS and the total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels (TC: p < 0.001 and p < 0.006, HDL-C: p = 0.002 and p = 0.004, and LDL-C: p < 0.001 and p < 0.009, respectively). However, only the HDL-C level was negatively associated with the aBMD in women (p = 0.016). A positive and statistically significant correlation was found between the serum triglyceride (TG) level and the aBMD in the women (p < 0.001). The TG level and the TBS were not statistically significantly correlated in either sex, and the TBS was not correlated with any of the lipid values in women. CONCLUSION: The results of this study showed some significant but generally weak associations between the lipid profile and the aBMD. The associations that were significant for both the men and the women included positive associations between the TG level and the femoral neck aBMD, as well as the HDL-C level and the femoral neck and lumbar spine aBMDs.


Assuntos
Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Dislipidemias/complicações , Lipídeos/sangue , Medição de Risco/métodos , Absorciometria de Fóton/métodos , Absorciometria de Fóton/estatística & dados numéricos , Idoso , Algoritmos , Osso Esponjoso/fisiopatologia , Dislipidemias/sangue , Feminino , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/fisiopatologia , Humanos , Irã (Geográfico) , Modelos Lineares , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/fisiopatologia , Masculino , Pessoa de Meia-Idade , Osteoporose/diagnóstico por imagem , Osteoporose/etiologia , Estudos Prospectivos , Fatores de Risco
15.
JBMR Plus ; 3(4): e10078, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31044180

RESUMO

Absolute values of cortical porosity and trabecular density are used to estimate fracture risk, but these values are the net result of their growth-related assembly and age-related deterioration. Because bone loss affects both cortical and trabecular bone, we hypothesized that a surrogate measure of bone fragility should capture the age-related deterioration of both traits, and should do so independently of their peak values. Accordingly, we developed a structural fragility score (SFS), which quantifies the increment in distal radial cortical porosity and decrement in trabecular density relative to their premenopausal mean values in 99 postmenopausal women with forearm fractures and 105 controls using HR-pQCT. We expressed the results as odds ratios (ORs; 95% CI). Cortical porosity was associated with fractures in the presence of deteriorated trabecular density (OR 2.30; 95% CI, 1.30 to 4.05; p = 0.004), but not if trabecular deterioration was absent (OR 0.96; 95% CI, 0.50 to 1.86; p = 0.91). Likewise, trabecular density was associated with fractures in the presence of high cortical porosity (OR 3.35; 95% CI, 1.85 to 6.07; p < 0.0001), but not in its absence (OR 1.60; 95% CI, 0.78 to 3.28; p = 0.20). The SFS, which captures coexisting cortical and trabecular deterioration, was associated with fractures (OR 4.52; 95% CI, 2.17 to 9.45; p < 0.0001). BMD was associated with fracture before accounting for the SFS (OR 5.79; 95% CI, 1.24 to 27.1; p = 0.026), not after (OR 4.38; 95% CI, 0.48 to 39.9; p = 0.19). The SFS was associated with fracture before (OR 4.67; 95% CI, 2.21 to 9.88) and after (OR 3.94; 95% CI, 1.80 to 8.6) accounting for BMD (both ps < 0.0001). The disease of bone fragility is captured by cortical and trabecular deterioration: A measurement of coexisting cortical and trabecular deterioration is likely to identify women at risk for fracture more robustly than absolute values of cortical porosity, trabecular density, or BMD. © 2018 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

16.
J Bone Miner Res ; 34(8): 1451-1460, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30883870

RESUMO

Advancing age is accompanied by a reduction in bone formation and remodeling imbalance, which produces microstructural deterioration. This may be partly caused by a diversion of mesenchymal cells towards adipocytes rather than osteoblast lineage cells. We hypothesized that microstructural deterioration would be associated with an increased marrow adiposity, and each of these traits would be independently associated with nonvertebral fractures and improve discrimination of women with fractures from controls over that achieved by femoral neck (FN) areal bone mineral density (aBMD) alone. The marrow adiposity and bone microstructure were quantified from HR-pQCT images of the distal tibia and distal radius in 77 women aged 40 to 70 years with a recent nonvertebral fracture and 226 controls in Melbourne, Australia. Marrow fat measurement from HR-pQCT images was validated using direct histologic measurement as the gold standard, at the distal radius of 15 sheep, with an agreement (R2 = 0.86, p < 0.0001). Each SD higher distal tibia marrow adiposity was associated with 0.33 SD higher cortical porosity, and 0.60 SD fewer, 0.24 SD thinner, and 0.72 SD more-separated trabeculae (all p < 0.05). Adjusted for age and FN aBMD, odds ratios (ORs) (95% CI) for fracture per SD higher marrow adiposity and cortical porosity were OR, 3.39 (95% CI, 2.14 to 5.38) and OR, 1.79 (95% CI, 1.14 to 2.80), respectively. Discrimination of women with fracture from controls improved when cortical porosity was added to FN aBMD and age (area under the receiver-operating characteristic curve [AUC] 0.778 versus 0.751, p = 0.006) or marrow adiposity was added to FN aBMD and age (AUC 0.825 versus 0.751, p = 0.002). The model including FN aBMD, age, cortical porosity, trabecular thickness, and marrow adiposity had an AUC = 0.888. Results were similar for the distal radius. Whether marrow adiposity and cortical porosity indices improve the identification of women at risk for fractures requires validation in prospective studies. © 2019 American Society for Bone and Mineral Research.


Assuntos
Adiposidade , Densidade Óssea , Medula Óssea , Colo do Fêmur , Fraturas Ósseas , Adulto , Idoso , Austrália , Medula Óssea/metabolismo , Medula Óssea/patologia , Feminino , Colo do Fêmur/metabolismo , Colo do Fêmur/patologia , Fraturas Ósseas/metabolismo , Fraturas Ósseas/patologia , Humanos , Pessoa de Meia-Idade , Porosidade
17.
Nutrients ; 10(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30321991

RESUMO

The aim of this study was to explore the reliability and precision of body compartment measures, in particular visceral adipose tissue, in weight stable adults over a range of BMIs using GE-Lunar iDXA. Weight-stable participants aged 18⁻65 years had a total body composition scan on GE-Lunar iDXA either on three separate occasions over a three month period (n = 51), or on a single occasion for duplicate scans with repositioning (n = 30). The coefficient of variation (CV%) and least significant change (LSC) of body compartments were calculated. The CV was higher for all measures over three months (range 0.8⁻5.9%) compared with same-day precision-scans (all < 2%). The CV for visceral adipose tissue (VAT) was considerably higher than all other body compartments (42.2% three months, 16.2% same day scanning). To accurately measure VAT mass using the GE iDXA it is recommended that participants have a BMI ≥ 25 kg/m², or VAT mass > 500 g. Changes observed in VAT mass levels below 500 g should be interpreted with caution due to lack of precision and reliability. All other compartmental measures demonstrated good reliability, with less than 6% variation over three months.


Assuntos
Absorciometria de Fóton/métodos , Composição Corporal , Índice de Massa Corporal , Gordura Intra-Abdominal , Adiposidade , Adolescente , Adulto , Idoso , Peso Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Reprodutibilidade dos Testes , Imagem Corporal Total , Adulto Jovem
18.
J Bone Miner Res ; 33(11): 1948-1955, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30001459

RESUMO

Distal forearm fractures during growth are more common in males than females. Because metaphyseal cortical bone is formed by coalescence of trabeculae emerging from the periphery of the growth plate, we hypothesized that the later onset of puberty in males produces a longer delay in trabecular bone formation and coalescence, which leaves a transient phase of high cortical porosity, low matrix mineral density, and high trabecular density relative to females. We quantified the nondominant distal radial microstructure using high-resolution peripheral quantitative computed tomography in 214 healthy Chinese boys and 219 Chinese girls aged between 7 and 17 years living in Hong Kong. Measurements of 110 slices (9.02 mm) were acquired 5 mm proximal to the growth plate of the nondominant distal radius. Porosity was measured using StrAx1.0 (Straxcorp, Melbourne, VIC, Australia) and trabecular plate and rod structure were measured using individual trabecula segmentation (ITS). Mechanical properties were estimated using finite element analysis (FEA). Results were adjusted for age, total bone cross-sectional area (CSA), dietary calcium intake, and physical activity. In boys, total bone CSA was 17.2% to 22.9% larger throughout puberty, cortical/total bone CSA was 5.1% smaller in Tanner stage 2 only, cortical porosity was 9.4% to 17.5% higher, and matrix mineral density was 1.0% to 2.5% lower in Tanner stage 2 to 5, than girls. Boys had higher trabecular rod BV/TV in Tanner stage 3 and 4, but higher trabecular plate BV/TV and plate to rod ratio in Tanner stage 5, than girls. Boys had 17.0% lower apparent modulus than girls in Tanner stage 2. A transient phase of higher porosity due to dissociation between bone mineral accrual and linear growth may contribute to higher distal radial bone fragility in Chinese boys compared to girls. © 2018 American Society for Bone and Mineral Research.


Assuntos
Povo Asiático , Osso Esponjoso/anatomia & histologia , Osso Cortical/anatomia & histologia , Puberdade/fisiologia , Caracteres Sexuais , Adolescente , Fenômenos Biomecânicos , Criança , Feminino , Humanos , Estilo de Vida , Masculino , Tamanho do Órgão
19.
J Bone Miner Res ; 33(7): 1312-1317, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29489033

RESUMO

Reduced bone mineral density (BMD) may be due to reduced mineralized bone matrix volume, incomplete secondary mineralization, or reduced primary mineralization. Because bone biopsy is invasive, we hypothesized that noninvasive image acquisition at high resolution can accurately quantify matrix mineral density (MMD). Quantification of MMD was confined to voxels attenuation photons above 80% of that produced by fully mineralized bone matrix because attenuation at this level is due to variation in mineralization, not porosity. To assess accuracy, 9 cadaveric distal radii were imaged at a voxel size of 82 microns using high-resolution peripheral quantitative computed tomography (HR-pQCT; XtremeCT, Scanco Medical AG, Bruttisellen, Switzerland) and compared with VivaCT 40 (µCT) at 19-micron voxel size. Associations between MMD and porosity were studied in 94 healthy vitamin D-replete premenopausal women, 77 postmenopausal women, and in a 27-year-old woman with vitamin D-dependent rickets (VDDR). Microstructure and MMD were quantified using StrAx (StraxCorp, Melbourne, Australia). MMD measured by HR-pQCT and µCT correlated (R = 0.87; p < 0.0001). The precision error for MMD was 2.43%. Cortical porosity and MMD were associated with age (r2 = 0.5 and -0.4, respectively) and correlated inversely in pre- and postmenopausal women (both r2 = 0.9, all p < 0.001). Porosity was higher, and MMD was lower, in post- than in premenopausal women (porosity 40.3% ± 7.0 versus 34.7% ± 3.5, respectively; MMD 65.4% ± 1.8 versus 66.6% ± 1.4, respectively, both p < 0.001). In the woman with VDDR, MMD was 5.6 SD lower and porosity was 5.6 SD higher than the respective trait means in premenopausal women. BMD was reduced (Z-scores femoral neck -4.3 SD, lumbar spine -3.8 SD). Low-radiation HR-pQCT may facilitate noninvasive quantification of bone's MMD and microstructure in health, disease, and during treatment. © 2018 American Society for Bone and Mineral Research.


Assuntos
Densidade Óssea , Matriz Óssea/fisiopatologia , Osso Cortical/fisiopatologia , Pós-Menopausa/fisiologia , Pré-Menopausa/fisiologia , Raquitismo/tratamento farmacológico , Raquitismo/fisiopatologia , Vitamina D/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Matriz Óssea/diagnóstico por imagem , Osso Cortical/diagnóstico por imagem , Feminino , Humanos , Pessoa de Meia-Idade , Porosidade , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/patologia , Rádio (Anatomia)/fisiopatologia , Raquitismo/diagnóstico por imagem , Adulto Jovem
20.
Arch Osteoporos ; 13(1): 5, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29313169

RESUMO

PURPOSE: Bone fragility contributes to increased fracture risk, but little is known about the emergence of post-stroke bone loss. We investigated skeletal changes and relationships with physical activity, stroke severity, motor control and lean mass within 6 months of stroke. METHODS: This is a prospective observational study. Participants were non-diabetic but unable to walk within 2 weeks of first stroke. Distal tibial volumetric bone mineral density (vBMD, primary outcome), bone geometry and microstructure (high-resolution peripheral quantitative computed tomography) were assessed at baseline and 6 months, as were secondary outcomes total body bone mineral content and lean mass (dual energy X-ray absorptiometry), bone metabolism (serum osteocalcin, N-terminal propeptide of type 1 procollagen (P1NP), C-terminal telopeptide of type 1 collagen (CTX)), physical activity (PAL2 accelerometer) and motor control (Chedoke McMaster) which were also measured at 1 and 3 months. RESULTS: Thirty-seven participants (69.7 years (SD 11.6), 37.8% females, NIHSS 12.6 (SD 4.7)) were included. The magnitude of difference in vBMD between paretic and non-paretic legs increased within 6 months, with a greater reduction observed in paretic legs (mean difference = 1.5% (95% CI 0.5, 2.6), p = 0.007). At 6 months, better motor control was associated with less bone loss since stroke (r = 0.46, p = 0.02). A trend towards less bone loss was observed in people who regained independent walking compared to those who did not (p = 0.053). Higher baseline daily count of standing up was associated with less change in bone turnover over 6 months: osteocalcin (r = -0.51, p = 0.01), P1NP (r = -0.47, p = 0.01), CTX (r = -0.53, p = 0.01). CONCLUSION: Better motor control and walking recovery were associated with reduced bone loss. Interventions targeting these impairments from early post-stroke are warranted. CLINICAL TRIAL REGISTRATION: URL: http://www.anzctr.org.au . Unique identifier: ACTRN12612000123842.


Assuntos
Densidade Óssea/fisiologia , Doenças Ósseas Metabólicas , Acidente Vascular Cerebral , Tíbia , Absorciometria de Fóton/métodos , Acelerometria/métodos , Austrália , Doenças Ósseas Metabólicas/diagnóstico , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/prevenção & controle , Remodelação Óssea/fisiologia , Colágeno Tipo I/sangue , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Limitação da Mobilidade , Atividade Motora , Osteocalcina/sangue , Estudos Prospectivos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Reabilitação do Acidente Vascular Cerebral , Tíbia/diagnóstico por imagem , Tíbia/metabolismo , Tíbia/patologia , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA